skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Soori, Raveendra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern last-level caches are partitioned into slices that are spread across the chip, giving rise to varying access latencies dictated by the physical location of the accessing core and the cache slice being accessed. Although, prior work has shown that dynamically determining the best location for blocks within such Non-Uniform Cache Access architectures can provide significant performance benefits, current hardware does not implement this functionality. Instead, modern processors hash blocks across the LLC slices, obscuring the non-uniform architecture of the underlying cache and forfeiting the performance benefits of placing data in the nearest cache slices. Moreover, while prior work advocated improving performance by delegating control over block placement to the operating system at page granularity, modern processor hardware thwarts these approaches by hashing cache slice selection at cache block granularity. In this work, we make two observations that enable us to improve software performance on modern NUCA architectures. First, we find that software can undo the hashing performed by hardware and efficiently manage data placement at cache block granularity. Second, that the complexity of fine-grained data placement can be hidden from the developer by embedding it in the dynamic memory allocator. Leveraging these observations, we design a new specialized memory allocator, NUCAlloc, suitable for use with C++ containers such as std::map and std::set. NUCAlloc handles the complexity of NUCA-aware block placement, improving the performance of containers by placing their data into the nearest LLC slices. We demonstrate that our NUCAlloc prototype consistently outperforms std::allocator and jemalloc for LLC-resident containers, improving performance by up to 20% in both single-threaded and multi-threaded software. 
    more » « less